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Causal Cats

Why cats? First, I am surrounded by four felinoform beings. So I muse, perhaps
far too much and too often, what must they be thinking? I am convinced they
do complex computations in a mathematical mechanics I do not understand at
all, just to jump 2 meters from a corner perch on a table 1 meter lower than a
destination on a 5 centimeter wide window sill.

Yes, I anthropomorphize! They are a prime example of “I have no idea what
they are up to, but let me hypothesize anyway. .. ” Dogs barking for no apparent
reason might be the model of why the car alarm goes off in the middle of night
for also no apparent reason, incessantly. This is realm of efficient causality, the
fine art of understanding the sequence and pattern of how point A goes to B
and C at the same time and B goes to D thereafter. I'm sure as I watch my
cat jump that she is thinking of the effectiveness and efficiency of achieving
her goal of reaching the sill.

Anyway, it begins with cats. Find your own causal totems to guide you. Oh,
do we remember Erwin Schrodinger’s cat? There, an example from exactly the
domain of our concern, uncertainty ... and a cat.

We do study causation for any number of reasons. First, we want, desire, to
know how and why anything at all works, is related to anything else, and
especially how and why it matters at all. Second, we study causation because we
need to ask intelligent questions about data, further to ask reflective questions
about our understanding of data, and then to ask further questions about the
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rationality of our understanding, and finally, use these answers to formulate
and and aid us when we act on our choices.

In this process we learn of and value our successes and failures, identify blind
alleys and dead ends, and even get to ask questions of what if. This last question
wanders into the dialectical realm of but for and if it weren’t for and unless,
as we fill in the blanks of the counter-factual intervention analysis set up in a
causal analysis.

George Gilder says we should waste transistors (that is chips). Gilder makes the
fairly obvious point that we must use transistors (lots of them in an integrated
circuit) or go out of business. They are ubiquitous. And arrived everywhere in
a very short amount of time to boot. If you do not use them you lose control
of your cost structure. Anything you build will be too expensive, too heavy,
too big, too slow, too lacking in quality. *

Michael Schragge builds on Gilder’s ironic hyperbole about transistors and
analogizes that we should “waste simulations.”? If we do not waste prototyping,
rapid development, simulating potential problems, solutions, we will also
be liable to misjudge the trajectory of all of our activity. By misjudging the
trajectory we mean, ultimately, to take a line of least resistance where we might
miss a dead-end, blind alley, or the opportunity to correct a wrong assumption.
This further implies we must simulate until we drop! The alternative is that
we will miss the one opportunity to improve on that, as yet unkown, one error
that throws us off the arc of our plan. Of course the point he makes is that
it iss not a waste, rather it is the point that we should never shy away from
working the problem, simulating the art of the possible, until time and space
constraints enforce themselves.

So what is the value added of a prototype, which is simply a working model?
It is about information, and information is a surprise, a deviation from a
trend. Schragge believes that testing a hypothesis just gets us to the point of
saying we seem, in probability that is, to have a trend going on here. In the
world of growth, opportunity, error and ignorance, having a trend is barely
the beginning of our journey. It is the deviation from the trend that matters.

Schragge quotes Louis Pasteur: “Chance favors the prepared mind.” Here the
prepared mind is a product of simulations, the rapidly developed prototypes,

1See Gilder’s comments here:https://gilderpress.com/2020/03/12/investors-should-
ignore-materialistic-superstitions/. He goes on to a further idea: build billions of 1-chip
interconnected systems (our mobile phones that are really computers) and waste chips that
way instead of manufacturing billion chip data centers. According to Moore’s law we will
eventually get to a near zero-cost chip. We can checkout any retailer: I just saw an offer for
300 assorted transistors for $9.90 or about $0.033 per transistor. Yes, near-zero cost. Yet
some might say it took about $50 million to develop a chip in the 40-64nm range.

2Here is a taste of Schrage’s points of view. He compiled the “wasting prototyping’
paradigm into this book a couple of decades ago. We are not at zero-cost computing.
However, in 1989 I purchased a laptop for about$1,100, a huge personal investment in those
days. Today a far more powerful computer now costs about $700 at a big-box discount store.

)


https://gilderpress.com/2020/03/12/investors-should-ignore-materialistic-superstitions/
https://gilderpress.com/2020/03/12/investors-should-ignore-materialistic-superstitions/
https://www.technologyreview.com/2004/07/01/40161/prepared-minds-favor-chance/
https://www.amazon.com/exec/obidos/ASIN/0875848141/softwgardeinc
https://www.amazon.com/exec/obidos/ASIN/0875848141/softwgardeinc
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Fleming used agar and discovered penicillin — completely unexpected! Dan
Bricklin developed the spreadsheet IBMDOS/Apple Ile program Visicalc.® As
a complete surprise this product was able to be used by millions of people to
rapidly simulate other products and services. 4

What surprises will we discover with our generative models as we waste causal
simulations? A working prototype should be a sandbox where everyone is
willing to get in and play. It has at least to be durable enough to get to the first
slate of useful comments and suggestions for further improvement. Onward!?

Types of causal patterns

Efficient causality is a syllogism, a chain of reasoning. There are series (a
sequence one after another) and parallel paths (simultaneous moves). In the
end, there are only three basic causal patterns.

1. Chains, similar to a syllogism, really a series, sequence, chain of
reasoning. We also call these pipes. Modus ponens and Modus tollens
are simple examples of valid logically conclusive chains.

2. Forks, leading to an analysis of confounds of causes and effects,
often combined in chains. These are the simultaneous moves of a
parallel pattern of reasoning.

3. Colliders ... invert the forking process. Where they exist we need
not contend with correcting confounds as we already have the causal
solution. These are also the moves of a parallel pattern of reasoning.

Well, let’s look at those separately and askance!

Chained melodies

To chain three objects together is to make them dependent upon one another.
What we want are unchained causes and effects. Anything getting in the way

3Here is a summary of his work at https://en.wikipedia.org/wiki/Dan_ Bricklin His
innovation with Visicalc was to transform 20 hours of work into 15 minutes, almost of almost
play at the time. Visicalc first ran on the Apple Ile. Dan is working on a web-based WikiCalc
these days.

4Steve Jobs credited Visicalc with the success of the Apple Ile and Macintosh in a WGBH-
PBS interview in 1990 at minute 4:27 in https://www.youtube.com/watch?v=iEi8UxEncic
He discussed the two explostions in desktop computing, spreadsheets and desktop publishing.
He opined on a third explosion, the development of an electronic organization to have clusters
of people on a common task across geography and hierarchical organizations. He called this
a collaborative model and extends personal computing into interpersonal computing. Now
people had a reason to buy the PC.

5If you want to read other non-statistical stories, just skip ahead to the Cassiopeia
Effect. Mythology ever with its grain of truth provides further hermeneutical grist for our
causal cats.


https://en.wikipedia.org/wiki/Dan_Bricklin
https://www.youtube.com/watch?v=iEi8UxEncic
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will confound our understanding of how a cause becomes an effect. So how do
we remove the links in a chain? We get out the bolt-cutters. In probability
and statistics linkages are dependencies and dependencies are conditions. We
remove or add them to our list of supposed dependencies.

Another term used for a chain is the pipe. We will continue to use the very
visual and evocative term change. In this chain of causality literally one thing
leads to another. In logical terms the objects in the chain form a line of
reasoning about going from an initiating entity to another entity, onto yet
another, ultimately landing at a terminus. Each of the intermediate entities
are instrumental in getting us to the terminal entity. There is a beginning,
leading to a link in the middle, and resulting in an end.

This is such an abstract way to characterize this otherwise simplistic causal
chain. Here is a simple chain. Any chain requires at least three entities, e.g.,
gender, education, wages. We will use X, Y, and Z.

library( gganimate )
library( animation )
tidy_ggdag <- dagify(

zZ ~ X,
y ~z
DAY

tidy_dagitty ()
p <- ggdag( tidy_ggdag )

A causal model of the chain is the coupling of a trio of entities linked with two
relationships, each with a distribution to back them up to help us understand
how the linkages might interact under various conditions. We simulate to
stimulate further understanding.

X ~ Normal(y, o) (1)
Z ~ Bernoulli(InverseLogit(Z)) (2)
Y ~ Normal(2Z — 1, 0) (3)

The Z variable effectively splits the relation between X and Y into two, possibly
overlapping, sets. In the R language, the rnorm() will draw numbers from
the Gaussian, Pearson’s Normal, distribution. The rbern() is the Bernoulli
distribution, a kernel of the binomial distribution. The InverseLogit function
maps a continuous value into the (0,1) interval, mimicking a probability that
feeds the Bernoulli distribution. We pull the chained entities’ outcomes into
a tibble and plot the results.

N <- 1000
X <- rnorm(N)
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Z <- rbern(N,inv_logit (X))
Y <- rnorm(N, (2*xZ-1))
dat <- tibble(
X,
Z,
Y
)
dat %>%
ggplot( aes( X, Y )) +

geom_point ( 1) +

geom_density2d() +

geom_smooth( 1m, FALSE ) +
geom_smooth( aes( X, Y ), 1m, FALSE )

The two-dimensional density plot demonstrates the chain’s positive impact
of X on Y. There is a concentration of impacts around point (0,0), very
multi-normal indeed, with a sprinkling of outlying, less frequently occuring,
variates in the plane surrounding this statistical hill, viewed from above.

This is a classic identification problem. In economic impact studies we often
observe the upward sloping statistical relationship between price and quantity.
We even might be nudged into thinking that if prices rise, people might buy
more. This seems to go against common sense, if common sense dictates buy
low and sell high, then our statistical estimation is, to put it mildly, off kilter.
The relationship instead might be simply confounded.
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In the next experiment we plot two ways in which X might statistically influence
Y. We have already encoded, through the chain DAG, and in the generative
model, the intermediate factor Z as a Bernoulli process resulting in zeros
and ones. This time we instruct the plotter to notice the possible differences
between (X,Y) | Z = 0, pairings when Z = 0, and (X,Y) | Z = 1, pairings
when Z = 1. Color coding the factor Z combinations aids our comprehension
here. Regression lines through the tops of these two statistical hills tells the
story. In effect we condition the joint determination of X and Y on Z.

dat %>%
ggplot( aes( X, Y, color = factor(Z) )) +
geom_point( shape = 1 ) +
geom_density2d() +
geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )

2.5-

factor(Z)
> 00- =0
-1
-2.5-

# Add linear regression lines

No longer is Y positively impacted by X. In fact, Y is negatively impacted by
X, when we account for the differentiator Z. In the economic impact case of
mis-identification, the factor Z, which might represent two different markets,
delineates two different and negatively sloped, statistically that is, demand
curves. We have unconfounded the chain by conditioning the relationship
between Y and X with the factor Z.

We have backed into Pearl (2016)’s Rule 1:
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Theorem 1 (Rule 1: Conditional Independence in Chains). Let Z be a set of
variables along the unidirectional path that connects variables X with Y. Then
X is independent of Y if X and Y are conditional on Z.

Forked causes

The fork starts with a fact which can simultaneously impact the supposed
cause X and effect Y. The adverb simultaneously can be thought of in two
ways. In one way, in the time domain, the factor acts in the same nano-second,
really at exactly the same time, on both cause and effect. But another way
of thinking about simultaneity would have the factor influence the effect
sometimes, and at all other times the cause. We simply do not know that an
influence occurs, but we do know, or at least opine we know what we know
here, that it is plausible that the factor will affect either the cause or the
effect. The accumulation of factor’s influence on the cause might be less then,
equal to, or greater than the factor’s influence on the effect. In any case, would
everyone agree that the factor truly can confound any thought of a relationship
between cause X and effect Y? Let’s suppose so.

Here is a graphical representation of the way one variable, Z, would simulta-
neously share information with two other variables, X and Y. Here there is no
back sharing of information from X or Y to Z. If there were we would have
quite a different discussion!

tidy_ggdag <- dagify(

X ~ z,
y ~z
) %%

tidy_dagitty ()
ggdag( tidy_ggdag ) +
theme_dag()
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Okay, it still looks like a chain. We would just stretch Z to the northwest
corner of this drawing to notice the forkedness of the diagram, or we could
just pretend someone stepped on the fork and flattened it. The point of this
extended discussion is that what we see is not what’s at stake. What is at
stake if that Z influences both Y and X, somehow. But our hypothesis is still
that X is the cause and Y is the effect.

A statistically minded causal model of the fork is this trio of relationships,
each with a distribution to back them up.

Z ~ Bernoulli(p) (4)
X ~ Normal(2Z-1, o) (5)
Y ~ Normal(2Z — 1,0) (6)

Fashioned in this way Z again can take on one of two discrete values which
might, in our story, represent two different treatments, genders, countries, or
status. The status palpably affects the means of the normal distributions both
of X and Y. (Merton 1967 the Matthew Effect.)

We can complicate this a bit to show how another fork could influence two of
the three variables. We might call this interloper U, an unobserved variable.
tidy_ggdag <- dagify(

X ~ z,
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X ~ u,
z ~u,
y ~z

) %>

tidy_dagitty O
ggdag( tidy_ggdag ) +
theme_dag()

In a linear sort of way, we can model U in this slightly amended causal
arrangement.

U ~ Normal(0, 1) (7)
Z ~ Bernoulli(InverseLogit(U)) (8)
X ~ Normal(2Z — 1+ U, 0) (9)
Y ~ Normal(2Z — 1,0) (10)

Thus we might tell a potential saga of missing variables in a study, or the
omission of data in an investigation, or the ignorance of a factor, or a cause,
in a chain of reasoning.

In this causal scenario, U simply confounds the generation of X and Z by
sometimes sharing more or less information with X and othertimes more or
less with Z. U can represent missing observations, model misspecification and
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selection bias, sometimes all at once. Shall we say it muddies the water a bit
more than the simple fork?

First, let’s simulate without the U confounder to create a baseline case of the
simple fork’s simulated causes and effects. Initially, we will plot only the effect
and the cause, as we did with the chain.

N <- 1000

Z <- rbern(N)

X <- rnorm(N,2*Z-1)
Y <- rnorm(N, (2*xZ-1))
dat <- tibble(

X = X,
z =12,
Y=Y
)

dat %>%
ggplot( aes( X, Y )) +
geom_point( shape = 1 ) +
geom_density2d() +
geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )

-2

-5.0 -2.5 0.0 2.5

Clearly, X statistically effects changes in Y. Now let’s disaggregate the effects
as we did with the chain. Here we plot the impact of the Z factor’s contribution
to the effect and to the cause.
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N <- 1000

Z <- rbern(N)

X <- rnorm(N,2*Z-1)
Y <- rnorm(N, (2*Z-1))
dat <- tibble(

X=X,
Z =2,
Y=Y
)
dat %>%
ggplot( aes( X, Y, color = factor(Z) )) +
geom_point( shape = 1 ) +
geom_density2d() +
geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )
2-
factor(Z)
> o- =o= 0
-1

Remarkably we see that both X and Y are not at all related to one another
for either value of Z, even when we use the chain technique to differentiate the
two cases encoded in Z. This is the confounding effect itself! Factor Z donates
information pari passu and lickety-split to X and Y.

When we add another confounder U and plot the interaction of X and Y
conditional on the status of the U confounder we get this story.

N <- 1000
U <- rbern(N)
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Z <- rbern(N, inv_logit(U))
X <- rnorm(N,2*Z-1 + U )

Y <- rnorm(N, (2*xZ-1))

dat <- tibble(

X =X,
Z =17,
Y =Y,
U=1
)
dat %>%

ggplot( aes( X, Y, color = factor(U) )) +
geom_point( shape = 1 ) +

geom_density2d() +

geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )

Contents

factor(U)
=== 0

- ]

In this panel we see that both X and Z depend on U. Amazingly (but is it?)
we get back the same relationship we basically (except for a slight shift) saw

with the pure X to Y plot.

What did U do to the confounding influence of Z on both X, cause, and Y/,
effect? Basically, U shifts the focus of the information flow away from Y to X.
It literally loads X with a differentiator which does not impact Y, the effect.

It effectually and partially closes the door on the impact of Z on Y.
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Just a thought now: what if we partially closed the door on X instead and
loaded U into the effect Y7

<- 1000

<- rbern(N)

<- rbern(N, inv_logit(U))
<- rnorm(N,2*Z-1 )

<- rnorm(N,2%Z-1 + U)
dat <- tibble(

< XN =

B

3

3

< N X
]
< N

dat %>%
ggplot( aes( X, Y, color = factor(U) )) +
geom_point( shape = 1 ) +
geom_density2d() +
geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )

5.0-

25-

factor(U)
== 0

-]

This time we magnify the differences in how U influences Y and X. Statistically
we can not discern whether or not Y or X are cause or effect at all! All we
can do is rise above the statistical statements that one variate is related to
another plausibly, and here, positively, as in the generating model.
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We are at another rule, the rule to correct, adjust, the relationship between
cause and effect due to a fork, a confounder.

Theorem 2 (Rule 2: Conditional Independence in Forks). Let Z be a common
cause of variables X andY . Let there only be one path between X and Y. Then
X and Y are independent conditional on Z.

Colliding effects

In this third, and final, case two variables independently influence a third,
that is, they collide into the third variable. The two causitive variables are
independent of one another only in respect of their being immediate causes of
the terminal effect.

tidy_ggdag <- dagify(

zZ ~ X,
z -~y
) %>

tidy_dagitty )
ggdag( tidy_ggdag ) +
theme_dag()

FIGURE 1 Causal model of a collider.

Z is the result of cause X and cause Y, whatever they are. And they are
independent of one another in this segment of the story of these three variables.
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First here is the depiction of this story of X — Y, that is X causes Y, at least
as statistically told. At least we can use this as a baseline.

dat %>%
ggplot( aes( X, Y )) +

geom_point ( 1)+
geom_density2d() +

geom_smooth ( 1m, FALSE )
50-

25-

0.0-

-4 -2 0 2 4

FIGURE 2 Two causes colliding into one effect.

Now, here is one possible rendition of the simple story of X and Y implying Z
told through a 1000 iterations. We remember, and reconstruct in our mind,
that X would have caused Y in this mind of ours.

N <- 1000
X <- rnorm(N)
Y <- rnorm(N)
Z <- rbern(N,inv_logit (2*X+2*Y-2))
dat <- tibble(
X,
z,
Y
)
dat %>%
ggplot( aes( X, Y, factor(Z) )) +
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geom_point( shape = 1 ) +

geom_density2d() +

geom_smooth( method = lm, se = FALSE ) +
geom_smooth( aes( X, Y ), method = 1lm, se = FALSE )

factor(Z)
== 0

8= ]

o
o

FIGURE 3 Colliding: inverting the fork.

No Z yields the plot of X — Y! Do we not have a third rule to follow from
this demonstration?

Theorem 3 (Rule 2: Conditional Independence in Colliders). Let X and Y
separately collide into Z. Then X and Y are unconditional and independent,
but are dependent and conditional on Z and descendants of Z.

Stargazing

The purportedly vain and beautiful Cassiopeia reigned as queen of Aethiopia
with her husband King Cepheus. She allegedly committed the sin of hubris by
saying that she and her daughter Andromeda were more beautiful than the
daughters of the sea god Nereus, known as the Nereids. An enraged Poseidon
sent the sea monster Cetus to plague the coasts of Aethiopia. An oracle bade
Cepheus and Cassiopeia to sacrifice Andromeda in order to appease Poseidon.
They chained her daughter to a rock on the shore as a sacrifice to Cetus.
Perseus, her lover, saved her and killed the beast, and married Andromeda.
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Poseidon would not be outdone by the mortal Perseus. He still punished
Cassiopeia. He tied her to a chair in the heavens forever. She would revolve
upside down half of the time as the earth moved through time and the cosmos.
The inferential morale of this ancient story is that we should never assume
that appeasing our model with multiple sources of causal influences will result
in a happy ending of results.

The Cassiopeia Effect is the result of our hubris in our models. Also, in the
story, no one expected Perseus to arrive on the scene. We might consider as the
Perseus Effect the amazingly surprising result of an unexpected intervention,
also known as a counterfactual condition.

Cassiopeia labors under the stars

Let’s investigate labor market gender discrimination to build perhaps a more
realistic cause and effect model. Here D is gender discrimination, something
not measured, and thus acts as an unobserved variable. We do observe gender
with F' as female, and some sort of measure of ability, such as years of schooling
or scores on a test, with A as ability. We observe labor market outcomes as W
for wages.

The theory posits that wages depend on discrimination. The model assumes
that gender (F' is reporting as female) influences both occupational decisions by
labor suppliers and wage determination through discriminatory sorting of labor
sources. we observe occupational quality, gender, ability, and wages. We do
not directly observe discrimination in the data. Both wages and occupational
choices depend on ability. This all makes a lot of theoretical sense. But do any
of these forces confuse and confound the path of discrimination to wages?

Let’s map our story so far.

tidy_ggdag <- dagify(

D ~ F,
0~ A,
0~ F,
0 ~ D,
W~ D,
W~ 0,
W~ A

) h>%

tidy_dagitty ()
ggdag( tidy_ggdag ) +
theme_dag()

The shape of this causal map mimics the constellation of Cassiopeia. We
might be encouraged by conjecture, and the so-called hubris of Cassiopeia, to
regress wages on all of the other influences which collide into wages. However
we have two forked confounders, O < F — O and O < A — W, and one
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e

FIGURE 4 Causal impact on wages: occupation and ability impact wage
sensitivity to gender.

collider, F' — O < D, on the way to wages. These amount to three very sneaky
backdoor passes to confusion about how discrimination can cause wages.

A generative model will prod us

We will form and examine generative models to challenge our causal assump-
tion. Here is a generative model of our discrimination analysis. Occupational
decisions are plausibly abridged by discrimination, thus a negative relation-
ship. Discrimination also negatively impacts wages through channels of sub-
optimized labor choices. All other relationships are positive. The influence of
being female on occupational choice has been eliminated here since this is one
backdoor confounder on the path to wages.5

6We use what I now consider to be a canonical model of causality introduced by Richard
McElreath in a series of lectures all posted here: https://github.com/rmcelreath/causal sal
ad_ 2021. Any omissions, reversals, and other blemishes are of my own construction, not
Richard’s.


https://github.com/rmcelreath/causal_salad_2021
https://github.com/rmcelreath/causal_salad_2021
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F ~ Bernoulli(p) (11)
D=F (12)
A ~ Normal(0, 1) (13)
O ~ Normal(1 +2A+ 0F — 2D, 0) (14)
W ~ Normal(1 — 1D + 10 + 24, 0) (15)

The 1-coefficients indicate a single arrow and, thus influence, the 2-coefficients
indicate two arrows on paths into W. For example there are 2 paths to W
from A, one directly through O, and one directly not through O. There is
only 1 path from D to W, but 2 paths to W if we also include O. There are
4 paths in total each into W and O. Finally, since F is the indicator of D,
we might think we can detect D using just F'. This should be true, however,
is ' — D — W going to be magnified or diminished by O and A, otherwise
known as bias?

library(tidyverse)
library(rethinking)
library(stargazer)
#
N <- 100
data <- tibble(
rbern( N ),
F,
rnorm( N ),
1 + 2%A + 0%F - 2xD + rnorm( N ),
1 - 1*D + 1*0 + 2*A + rnorm( N )
)
#
Im_1 <- 1Im(W ~ F, data)
Im_2 <- 1m(W ~ F + 0, data)
Im_ 3 <- 1Im(W ~ F + 0 + A, data)
#
stargazer(lm_1,1lm_2,1m_3, "text", c("Biased Unconditional",

R

##
##
## Dependent variable:

##  mmm e
## W

## Biased Unconditional Biased Unbiased Conditional
## (1) (2) (3

## F -2.225%x 0.568x* —-0.952%xx
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## (0.876) (0.290) (0.284)

##

## 0 1.890%*% 1.045%%*%

## (0.063) (0.110)

##

## A 1.992%%x%

## (0.235)

##

## Constant 1.496%* 0.302 0.942%%x

## (0.619) (0.199) (0.169)

##

# -
## Observations 100 100 100

## R2 0.062 0.908 0.948

## Adjusted R2 0.052 0.907 0.946

## Residual Std. Error 4.380 (df = 98) 1.375 (af = 97) 1.045 (df = 96)

## F Statistic 6.452*x* (df = 1; 98) 481.333**x (df = 2; 97) 579.775x*xx (df = 3; 96
##

## Note: *p<0.1; **p<0.05; ***xp<0.C

The first model would have us believe that F' influences W more than 3 times
the impact than what is is in the data. This model is definitely biased. It is also
the right sign so we may have appeased our theory, but over-emphasized the
role of discrimination in the presence of other influences such as occupational
quality and ability.

The second model conditions both F' and O so that W seems to increase with
F and O. The sign of O is correct, higher-quality occupations determine higher
wages. The sign of F' is not the direction implied by the data, females have
a negative effect on wages in the data. This bias comes from the netting of
negative discrimination and positive ability through occupational quality on
to wages.

A third model has the correct sign and size of influence of ' - D — W
discrimination on wages. This model also correctly represents, within sampling
error, the size and sign of O and A on W.

That was the conventional OLS approach. Here are the fully probabilistic
models. The coefficients are carbon copies of the OLS models. These estimations
will allow us to assess the relative plausibilities of each model as well as their
informativeness.

m_1 <- quap( alist(
W ~ dnorm( muW, sigma ),
muW <- aW + bWFx*F,
aW ~ dnorm( 0, 1),
c( bWF ) ~ dnorm( 0, 1),



0.0 Causal Cats

sigma ~ dexp( 1)
), data )
precis( m_1 )

#t mean sd 5.5%
## aW 0.7937566 0.4763371 0.03247786
## DWF -1.1134694 0.6282024 -2.11745823
## sigma 4.2835664 0.2961956 3.81018859

Now for the second model.

m_2 <- quap( alist(
W ~ dnorm( muW, sigma ),
muW <- aW + bWF*F + bW0x*0,
aW ~ dnorm( 0, 1),
c( bWF, bW0) ~ dnorm( 0, 1),
sigma ~ dexp( 1)

), data )

precis( m_2 )

#it mean sd 5.5%
## aW 0.3156304 0.18708417 0.01663374
## DWF 0.5276326 0.27095555 0.09459328
## bWO  1.8801505 0.06134658 1.78210682
## sigma 1.3456439 0.09423574 1.19503694

#

Here is the third model.

m_3 <- quap(
alist(
W ~ dnorm( muW, sigma ),
muW <- aW + bWF*xF + bWO*0 + bWA*A,
aW ~ dnorm( 0, 1),
c( bWF, bWO, bWA ) ~ dnorm( O, 1),
sigma ~ dexp( 1 )
), data )
precis( m_3 )

## mean sd 5.5%
## aW 0.8672653 0.15840856 0.6140979
## DWF -0.8061240 0.26305484 -1.2265365
## bWO 1.0977591 0.10337475 0.9325463
## DbWA 1.8714922 0.21955869 1.5205950
## sigma 1.0204385 0.07183052 0.9056394

94 .59,
1.5550353
-0.1094806
4.7569441

94 .59
0.6146270
0.9606719
1.9781942
1.4962508

94.59,
1.1204328
-0.3857116
1.2629719
2.2223894
1.1352375
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With each of these models we then pull samples of each of the impact parameters
(all unobserved data) to compare and contrast their locations and shapes.

library(ggridges)

without_0 <- extract.samples( m_1 )$bWF #/[ ,1 J
with_0 <- extract.samples( m_2 )$bWF #/[ ,2 ]
with_0_A <- extract.samples( m_3 )$bWF #/[ ,2 ]

plot_extract <- tibble(
1:10000,
without 0O,
with_O,
with_0_A) %>%
pivot_longer(
-sim,
"model",
"DWF")

plot_extract %>%
ggplot( aes( bWF, model) ) +
geom_density_ridges() +
scale_fill _viridis_d() +
theme ( "bottom") +
labs( "Predicted variation of slope sensitivity",
"Occupation and Ability impact Wage sensitivity to gender.")

Now for the variability estimated for each model. This parameter is analogous
to the standard error of the OLS regression.

library(ggridges)

without_0 <- extract.samples( m_1 )$sigma #/[ ,1 ]
with_0 <- extract.samples( m_2 )$sigma #/ ,2 J
with_0_A <- extract.samples( m_3 )$sigma #/[ ,2 ]

plot_extract <- tibble(
1:10000,
without 0O,
with_ O,
with_0_A) %>%
pivot_longer(
-sim,
"model",
"sigma")

plot_extract %>
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Predicted variation of slope sensitivity
Occupation and Ability impact Wage sensitivity to gender.

without_O -

model

with_O_A-

with_O -

bWF

FIGURE 5 Predicted impact on wages: occupation and ability impact Wage
sensitivity to gender.

ggplot( aes( sigma, model) ) +
geom_density_ridges() +
scale_fill _viridis_d() +
theme ( "bottom")

These probabilistic models point to differences missed by the OLS. The o
credibility intervals not only get successively narrower in range, but also the
size of o gets appreciably smaller as we add ability, A, to the mix of variables.
We might be tempted to use the kitchen sink of all variables to improve the
overall explanatory power of the model.

Some regression diagnostics are in order, even with our generative data. One
more plot for another comparison: Pareto Smoothed Importance Sampling
(PSIS) calculated pointwise will help us identify outlier differences among
models. PSIS exploits the distribution of potentially outlying and influential
observations using the Generalized Pareto distribution to model and measure
the data point-wise with the shape parameter k = £. Any point with & > 0.5
will have infinite variance and thus contribute to a concentration of points in an
ever-thickening tail of the distribution of uncertainty about the relationships
we are modeling.
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FIGURE 6 Predicted variation of wages: accupation and ability impact wage
sensitivity to gender.

## R code 7.34 McElreath2020
#library( plotly )

options( 2, 999999)

d <- data

set.seed(4284)

PSIS m3 <- PSIS( m_3, TRUE )

PSIS_m3 <- cbind( PSIS m3, dsw, dso, dsaA,

set.seed(4284)
#WAIC_m2.2 <- WAIC(m2.2,pointwise=TRUE)
pl <- PSIS_m3 |>
ggplot( aes( x=pemnalty, y=k, wage, gender )) +
geom_point( 21 ) +
xlab("PSIS Pareto k") +
ylab("PSIS penalty") +
geom_vline( 0.03, "dashed")

pl

The cautionary tale here is that we also need to consider the three potential
biases: sign and size of the influence of a proposed variable on outcomes as
well as the role and influence of outliers.

d$F)
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FIGURE 7 Highly influential observations and out-of-sample prediction. Male
observations inhabit the NE quadrant with high penalty and Pareto k values.
These observations are highly unpredictable.
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